Please wait, while our marmots are preparing the hot chocolate…
# {*no-status title-slide} // commentaire
- {no}
- Navigate using the arrow keys (right/left) or the buttons on the sides
- {no}
- {no}
-
-
-
# The Galette cutting problem
- We have a Galette (King's Cake)
- It contains a bean
- We want to cut it
- in $N$ equal slices
- without hitting the bean
- What is the probability to achieve this?
# The King's cake (Galette) {libyli}
- @anim: g.brown +
- $R_G$ {params} // radius of the galette
- @anim: .slices +
- $N$ {params} // number of pieces to cut
- @anim: .feve1 +
- $r$ {params} // radius of the bean (a circle)
- @anim: .border + .R +
- $R = R_G - r$ // possible radius for the bean center
- @anim: .feve2 | .blue | .feve3 | .green | -.feve
- @anim: %+class:showthem:.thecontrols
- @anim: %+class:foggy:.content
- @anim: .rhombus .theta +
- $\theta = \frac{360}{N}$ // angle of a slice
- @anim: %-class:showthem:.thecontrols
- @anim: %viewbox:svg .zoomRhombus
- @anim: .rhombus .shape | .rhombus .a | .rhombus .height +
- $\sin(\theta) = \frac{r}{a}$
$a = \frac{r}{\sin(\theta)}$ // side of the rhombus
- @anim: %+class:nothome:.rhombus .theta | .rhombus .dashed | .rhombus .x +
- $x = a + a \cos(\theta)$ // horizontal position of the rhombus corner
- @anim: %viewbox:svg .zoomSlice | -.rhombus
- @anim: .area .split | .rectwr | .rectwr .r, .rectwr .x | .rectwr .w +
- $w$ // width of the rectangle
- @anim: .area .beta .diag +
- $R^2 = w^2 + r^2$ // diagonal of the rectangle (Pythagore)
- $w = \sqrt{R^2 - r^2}$ // width of the rectangle
- @anim: .tri +
- $A_t = \frac{r w}{2} {}$ *et $A_h = \frac{r x}{2} {}$* // area of the upper rectangles
- @anim: .upperleft
- @anim: .area .beta .angle +
- $\sin(\beta) = r / R$
donc : $\beta = \arcsin(r/R)$ // angle of the blue slice
- @anim: .area .beta .zone +
- $A_b = \pi R^2 \cdot \beta / 360$ // area of the slice with angle $\beta$
- $A_p = \pi R^2 \cdot \theta / 360$ // area of the complete slice (with angle $\theta$)
- $A = A\_b + A\_t - A\_h$ // white area
- $A = \pi R^2 \cdot \frac{\beta}{360} + \frac{r w}{2} - \frac{r x}{2} {}$ // ... developped
- $p = (A\_p - 2 A) / A_p {}$ // probability of not cutting the bean
- $p = 1 - \frac{2 A}{A_p} {}$ // seen differently
- @anim: %+class:showthem:.thecontrols
- @anim: %dur:1000 + %viewbox:.zoomAll
- Thanks!
/ − will be replaced by the author − will be replaced by the title