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Why we need uncertainty quanti�cation?

Automated systems raise questions from experts
Can I trust the predictions?
Is the system con�dent in its prediction?
How was the decision taken?

Good decision making is based on some
assessment of uncertainties

Medical diagnosis
Asymmetric costs situations
Bene�t/risk evaluation
Multi-factorial decisions
Self driving cars
...
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What is uncertainty?

Uncertainty refers to epistemic situations involving
imperfect or unknown information. 

It applies to predictions of future events, to
physical measurements that are already made, or
to the unknown. 
Uncertainty arises in partially observable and/or
stochastic environments, as well as due to
ignorance, indolence, or both. 

It arises in any number of �elds, including
insurance, philosophy, physics, statistics,
economics, �nance, psychology, sociology,
engineering, metrology, meteorology, ecology and
information science. wikipedia
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Sources of Uncertainty in Models

Traditional ideal (deterministic) models, like rules in physics

e.g.,  (e.g., dynamics,  includes gravity etc)

e.g.,  (e.g., ideal gas law,  )

Sources of uncertainty around statistical models?

Examples
stochastic (non-deterministic) environment
"sensors": partial observations, noisy observations
limited data (e.g., estimate the fairness of a dice from only 2 throws)
modeling: incomplete/partial/imprecise (or even wrong) model

imprecision in the model (e.g., value of  in )

more...
Usual categories

Aleatoric (statistical) uncertainty... from things we cannot know
Epistemic (systematic) uncertainty... from things we could know

x =t+1 f(x )t f

Y = f(X) PV = nRT
W

π A = πr2
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Uncertainty Types: a simpli�ed view

Aleatoric  uncertainty

"true" inherent randomness
w.r.t. our observables, inputs and "ground truth" outputs
no amount of data can remove this uncertainty

Epistemic  uncertainty

not enough "training" data
wrong/simpli�ed modeling assumptions

Today's challenge
Learn a model under aleatoric and epsitemic uncertainty

NB: a task we won't cover in this talk, Uncertainty Propagation

given an actual model (manually speci�ed / already learned)
propagate the uncertainty from a given input to the output prediction

(statistical)

(systematic)

Deep learning for medical imaging school | Rémi Emonet | 2021-04-21 | 7 / 56 (3/4)

https://en.wikipedia.org/wiki/Ideal_gas_law


Uncertainty Types: a simpli�ed view

Aleatoric  uncertainty

"true" inherent randomness
w.r.t. our observables, inputs and "ground truth" outputs
no amount of data can remove this uncertainty

Epistemic  uncertainty

not enough "training" data
wrong/simpli�ed modeling assumptions

Today's challenge
Learn a model under aleatoric and epsitemic uncertainty

NB: a task we won't cover in this talk, Uncertainty Propagation

given an actual model (manually speci�ed / already learned)
propagate the uncertainty from a given input to the output prediction

(statistical)

(systematic)

Deep learning for medical imaging school | Rémi Emonet | 2021-04-21 | 7 / 56

 
  - Aleatoric/statistical = "true" inherent randomness 
  - Epistemic/systematic = missing data, bad model 

Uncertainty in Machine Learning: regression (1D "input", single "output")
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  - Aleatoric/statistical = "true" inherent randomness 
  - Epistemic/systematic = missing data, bad model 

Aleatoric uncertainty in regions of class overlap

Epistemic uncertainty when OOD (out of distribution) 
- encompasses many di�erent situations 
- NB: no perfect speci�cation of what to do for OOD

Epistemic uncertainty in regions of low data 
- especially with class imbalance, etc. 
- possibly combined with aleatoric

A Quick Visual Summary on Uncertainty
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How Neural Nets do Classi�cation? (reminder) (example with 3 classes)

softmax

input

"logits"

non-normalized

log probability

vector

output

probability

vector

o = softmax(l) ⇔ ∀i, o =i
exp(l )∑j j

exp(l )i

Deep learning for medical imaging school | Rémi Emonet | 2021-04-21 | 13 / 56 (4/5)



How Neural Nets do Classi�cation? (reminder) (example with 3 classes)

softmax

input

"logits"

non-normalized

log probability

vector

output

probability

vector

o = softmax(l) ⇔ ∀i, o =i
exp(l )∑j j

exp(l )i

Deep learning for medical imaging school | Rémi Emonet | 2021-04-21 | 13 / 56 (3/4)

A Probability for each class?

softmax

input

"logits"

non-normalized

log probability

vector

output

probability

vector

A probability vector is better than just predicting a class
parallel with a regression setting

instead of predicting a single output value
predict a distribution (e.g., a mean and variance)

But... ambiguity: aleatoric vs epistemic
what is actually uncertain (in the current representation space)

what the model doesn't know

A probability vector cannot convey all information

(but a good probability vector can be enough for some decision making)
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50% dog, 50% plane?

aleatoric vs epistemic
Example setup

a model trained to distinguish 2 classes, dog vs plane
on a new image, the network predicts 50%/50%
two possible situations

Case 1 !

 

Case 2 !
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ReLU Networks are Overcon�dent (Hein et al., CVPR2019)

Over-con�dent predictions

A deep model doesn't know what it doesn't know

NB: it is also over-con�dent in regions of inherent uncertainty

( Image from the companion-webpage https://github.com/max-andr/relu_networks_overcon�dent of: 
Why ReLU networks yield high-con�dence predictions far away from the training data and how to mitigate the problem)
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(Re)Calibrating a Trained Model 

Goal: properly quantifying aleatoric uncertainty
Calibration = for every , make the two following match,

the predicted output probably  from the model

and the actual class probability position 

⇒ "expected calibration error"
need binning (or density estimation) for estimation 
 

Possible solutions
re-�t/tune the likelihood/last layer (logistic, Dirichlet, ...)
e.g., �ne tune a softmax temperature
🖊

 

⇒    

⇒   

  ⇒   

f

x
f(x)

p(y∣x)

o = softmax (l) ⇔t ∀i, o =i
exp(l /t)∑j j

exp(l /t)i

t →∞

exp(.) → 1

o → uniform()

t → 0 softmax → max
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Dataset Shift, Domain Adaptation, Transfer Learning (not today's focus)

Dataset shift
the "target" set is di�erent from the training set
out of distribution situation
.🖊

Solution
Unsupervised domain adaptation (UDA)

use unlabeled target data to adapt
Usual approach

reduce the discrepancy 
between source and target datasets
a natural �t for the Optimal Transport theory
or, tune the classi�er to become certain on data points
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Ensemble methods

General principle

learn several models
"average" their predictions

Typical Approach: Bagging (bootstrap aggregating)

Sample several dataset, with replacement (bootstrap)
Average model predictions
Random Forests

maybe the most know bagging model
ensemble of decision trees
additionally use "feature bagging"

NB on boosting (e.g., AdaBoost) (not a simple average)

use just-better-than-random models
iteratively train with re-weighted datasets
learn the weights of the models
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Logistic Regressor Bagging Example
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Support Vector Machines (SVM) Bagging Example
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SVM Bagging Example with polynomial features (kernel)
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Multi-Layer Perceptron (MLP) Bagging Example
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Very-Deep MLP Bagging Example
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Summary on bagging

  

Bagging nicely handles quantifying aleatoric uncertainty

It works even with overcon�dent base models

The sampling creates the necessary noise in boundary regions

The model family controls Bagging's Out of Distribution behavior

Simple models have low OOD variety ⇒ 100% over-con�dence

Complex/varied models/features better assess epistemic uncertainty

However, still a major OOD over-con�dence (like most discriminative models)
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Zooming out to see Out Of Distribution Over-con�dence

Purely-discriminative models fail at OOD
We will ignore this issue for some time
 
Some solutions 
- Use Gaussian Processes 
- Combine with one-class / density est. 
- Force doubt on generated OOD samples
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Learning Ensembles of Deep Models

Re-seeding for stochastic methods

works very well in practice
resource intensive (mem., process)
some variations/optimizations

snapshot + cyclic learning rate

Di�erent
families of
models

di�erent
hyper-

parameters
di�erent architectures
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Stochastic Learning as Model Ensembling

Dropout: simultaneously training "  models" (with shared parameters)

randomly set weights or activations to 0 (for every SGD sample)

NB: often, "weight scaling rule" at test time -> very bad, no uncertainty
NB: dropout should be applied at test time (costly)

Other sources of stochasticity and ensembling
(mini-)Batch normalization
Stochastic (minibatch) Gradient Descent

2N
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Diverse vs Local Ensembling

Re-seeding, Dropout, ... 
⇒   diverse ensemble

Mode �tting (local diversity)

1. learn a single model
2. estimate the local loss landscape
3. create several perturbations of the

model
4. use all the models as an ensemble

Bayesian Neural Networks (BNN)

"dense" ensemble
can be both local or diverse
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The two rules in probabilities and Bayes'

"Bayesianism"
Everything as random variables
Use (conditional) probabilities ... a lot

Two probability rules

Product rule:  = 

Marginalization, Sum rule: 

And in the Baye's rule  bind them

NB: Exactly the same holds with probability densities (for continuous random variable)

P (A,B) = P (A∣B)  P (B) P (B∣A)  P (A)

P (B) = P (A,B) ≜

A

∑ P (A =
a

∑ a,B)

W

P (A∣B) = =
P (B)

P (B∣A)  P (A)

P (B∣A )  P (A )
A′

∑ ′ ′

P (B∣A)  P (A)
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Principle of Bayesian "Learning"

Use probabilities to
represent non-deterministic laws
represent uncertainty (aleatoric and epistemic)
reason about uncertainty (do learning, inference)

Considering
some parameters (e.g., weights of the network, )

some dataset (e.g., both training inputs and labels, )

We have ﹏🖊

More verbosely

Posterior probability
probability distribution of the parameters given the training set
i.e. what we know about the parameters after seeing the training set

W

X

P (W ∣X) = ∝
P (X)

P (X∣W)  P (W)
P (X∣W)  P (W)

P (weights∣trainset) =posterior
P (trainset)constant

P (trainset∣weights)  P (weights)likelihood prior
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Principle of Bayesian Neural Networks

input output

probability

vector

Typical BNN: have a 1D Normal distribution on each weight
1 mean and 1 variance per weight
1 billion weights ⇒ 2 billions parameters
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Bayesian Neural Networks - Uncertainty Quanti�cation (Overview)

1. Why we need to quantify uncertainty?

2. Some sources of uncertainty

3. Statistical machine learning approaches 
for general uncertainty modeling

4. Deep Learning practices for uncertainty modeling

5. Bayesian Neural Networks

1. Bayesian view of machine learning
2. Variational inference
3. Variational Dropout

6. Applications and Openings
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input output

probability

vector

Training a Bayesian Neural Network

Bayesian "learning"
Goal: �nding the 
posterior distribution on the parameters

Prediction for a new input 

Variational Inference (VI) (or Stochastic Gradient Variational Bayes, SGVB)

Parameterize , 

e.g., a  per weight    ⇒     1 billion means and variances

Do stochastic gradient descent (SGD)

Sample a weight at every forward pass 

i.e., approximate the  by a single sample

P (weights∣trainset)posterior

=
P (trainset)constant

P (trainset∣weights)  P (weights)likelihood prior

x

f (x) =posterior f (x) ⋅∫ weights P (weights∣trainset)posterior

P (weights∣trainset)posterior

Normal

⋯   ∫
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Variational Inference: BNNs vs VAE

Compared to Variational Autoencoders (VAE)

Also use the "reparameterization trick"

change      to     

allow the gradient to "�ow" to  and  

(VAE: allow the gradient to �ow to the encoder)

Model distribution on millions of parameters 
(VAE: distribution on latent variables, only a few, but for each data point)

No per-data (latent) variables ⇒ no need for amortization

w ∼ N (μ,σ )2 ε ∼ N (0, 1)  ;  w = μ+ ε.σ

μ σ
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Dropout and Bayesian Neural Networks

Traditional (weight) dropout
for each weight, "set" it to 0 with a probability 

at test time, multiply weights by  (weight scaling rule) 

Interpretation as a (�xed) distribution

, or 

 (reparameterized)

Bayesian implication: apply dropout at test time
(sometimes called "monte carlo dropout")

 with 

 with 

1 − p

p

w ∼i Mixture (0, v )p i

ε ∼i Bernoulli(p)  ;  w =i ε ⋅i vi

f (x) =posterior f (x) ⋅∫ w P (w∣trainset)posterior

f (x) =posterior E f (x)w∼P (w∣trainset)posterior
[ w ]

f (x) ≈posterior f (x)
D

1

j=1

∑
D

wj w ∼j P (w∣trainset)posterior

f (x) ≈posterior f (x)
D

1 ∑ v ⋅εj j ε ∼i
j

Bernoulli(p)
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Bayesian Treatment of Dropout

Bayesian approach, reminder: everything is a random variable
Treat  as a random variable (during "training")

�rst, how many  do we want to use?

a single  for the whole network

a  per layer

a  per weight

learn the posterior on the parameters , including 

⇒    need a prior... that acts as a natural regularization
non trivial optimization

A variety of dropout: Bernoulli, Gaussian (multiplicative)
dropout, sparsifying prior, ...

(e.g. Learnable Bernoulli Dropout for Bayesian Deep Learning)

p

p

p

p

p

θ p

θ = {W , p}
P (θ∣trainset) ∝ P (trainset∣θ) ⋅likelihood P (θ)prior
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Bayesian Neural Networks (BNNs): Summary

Bayesian treatment of neural networks
consider each weight as a random variable
formulate a prior on the weights
observe some (training) data, and given that...
... infer the (posterior) knowledge on these weights
use this knowledge for prediction

Several �avors, including
Dropouts

Bernouilli or gaussian
learnable dropout parameters
using prior to encourage network sparsity

 modeling of each weight

Learning, inference, testing
train by gradient descent (SGD) on the "variational" parameters
use sampling at test time to produce several predictions

N ormal
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Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus
(COVID-19) Detection

(Biraja Ghoshal, Allan Tucker)
dropweight on a BCNN
improve classi�cation
good quanti�cation
human/machine combination
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Towards safe deep learning: accurately quantifying biomarker uncertainty
in neural network predictions

(Zach Eaton-Rosen, Felix Bragman,
Sotirios Bisdas, Sebastien Ourselin, M.
Jorge Cardoso)
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... (cont)
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... (cont)
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Propagating uncertainty across cascaded medical imaging tasks for
improved deep learning inference

Raghav Mehta, Thomas Christinck,
Tanya Nair, Paul Lemaitre, Douglas L.
Arnold, Tal Arbel
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(Avoiding pathologies in very deep networks, Duvenaud et al.)

Gaussian processes (GP)

GP = In�nitely-wide BNN
Well formalized

closed forms
lot of works around scaling

Allows to include prior learning
Probabilistic, can be combined "easily"
Deep GP avoid too much kernel choice
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Going beyond probabilities?

Probabilities are a way of represent belief
It might be necessary to also represent con�dence
Some possible directions

Imprecise Probabilities 
Dempster–Shafer Theory (DST) 

theory of belief functions
evidence theory

W

W
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Evidential Deep Learning

Principle
instead of: predicting the parameters of an (aleatoric) distribution
do: predict a distribution over these parameters

A way of learning/representing epistemic uncertainty on aleatoric uncertainty

(e.g., Deep Evidential Regression (above))
(e.g., Evidential Deep Learning to Quantify Classi�cation Uncertainty)
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References and pointers

Wikipedia articles
Bayesian Probabilities 
Imprecise Probabilities 
Dempster–Shafer Theory (DST) 
Proper Scoring Rules  (and calibration)

Some (limited) pointers to research articles
Unclassi�ed

The need for uncertainty quanti�cation in machine-assisted medical decision making
On calibration

Well-calibrated regression uncertainty in medical imaging with deep learning
About dropout

Variational dropout and the local reparameterization trick
Variational dropout sparsi�es deep neural networks
Variational Gaussian dropout is not Bayesian
Learnable Bernoulli dropout for Bayesian deep learning

Evidential deep learning
Evidential Deep Learning to Quantify Classi�cation Uncertainty .
Deep Evidential Regression .

Some online references
Susan Holmes on Bayesian statistics
NeurIPS lecture on evidential deep learning

W

W

W

W
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