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Why we need uncertainty quantification?

e Automated systems raise questions from experts
o Can | trust the predictions?
o |s the system confident in its prediction?
o How was the decision taken?

e (ood decision making is based on some
assessment of uncertainties

o Medical diagnosis

o Asymmetric costs situations

o Benefit/risk evaluation
o Multi-factorial decisions
O
O

Self driving cars
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What is uncertainty?

Uncertainty refers to epistemic situations involving
imperfect or unknown information.

It applies to predictions of future events, to
physical measurements that are already made, or
to the unknown.

Uncertainty arises in partially observable and/or
stochastic environments, as well as due to
ignorance, indolence, or both.

It arises in any number of fields, including
insurance, philosophy, physics, statistics,
economics, finance, psychology, sociology,
engineering, metrology, meteorology, ecology and
information science.


https://en.wikipedia.org/wiki/Uncertainty

Sources of Uncertainty in Models
e Traditional ideal (deterministic) models, like rules in physics

o e.g., ri11 = f(x;) (e.g., dynamics, f includes gravity etc)
o eg,Y = f(X) (e.g. ideal gas law, PV = nRT")

e Sources of uncertainty around statistical models?

o Examples
= stochastic (non-deterministic) environment
= "sensors”: partial observations, noisy observations
= limited data (e.g., estimate the fairness of a dice from only 2 throws)
= modeling: incomplete/partial/imprecise (or even wrong) model

= imprecision in the model (e.g., value of 7 in A = 7'("7’2)
= more...
o Usual categories

= Aleatoric (statistical) uncertainty... from things we cannot know
= Epistemic (systematic) uncertainty... from things we could know



https://en.wikipedia.org/wiki/Uncertainty
https://en.wikipedia.org/wiki/Ideal_gas_law

Uncertainty Types: a simplified view

e Aleatoric uncertainty

o "true" inherent randomness
o w.r.t. our observables, inputs and "ground truth" outputs
o no amount of data can remove this uncertainty

e Epistemic uncertainty

o not enough "training” data
o wrong/simplified modeling assumptions

Today's challenge
Learn a model under aleatoric and epsitemic uncertainty

e NB: atask we won't cover in this talk, Uncertainty Propagation

o given an actual model (manually specified / already learned)
o propagate the uncertainty from a given input to the output prediction


https://en.wikipedia.org/wiki/Ideal_gas_law

Uncertainty in Machine Learning: regression (1D "input", single "output")

-Aleatoric/statistical = "true" inherent randomness
-Epistemic/systematic = missing data, bad model

Toy 1D-dataset
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Uncertainty in Machine Learning: classification (2D "input”, binary)

Aleatoric/statistical = "true" inherent randomness
€pistemic/systematic = missing data, bad model

Toy 2D-dataset

-10.0 -75 -50 -25 0.0 2.5 5.0 7.5 10.0




Toy 2D-Dataset: Aleatoric Uncertainty

Aleatoric/statistical = "true" inherent randomness

€pistemic/systematic = missing data, bad model

Aleatoric Uncertainty
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Toy 2D-Dataset: Epistemic Uncertainty

Aleatoric/statistical = "true" inherent randomness
€pistemic/systematic = missing data, bad model

Global Epistemic Uncertainty
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A Quick Visual Summary on Uncertainty

Aleatoric Uncertainty

-Aleatoric/statistical = "true" inherent randomness
-Epistemic/systematic = missing data, bad model

Aleatoric uncertainty in regions of class overlap
Epistemic uncertainty when 00D (out of distribution)
- encompasses many different situations

- NB: no perfect specification of what to do for OOD
Epistemic uncertainty in regions of low data

- especially with class imbalance, etc.
- possibly combined with aleatoric

"Aleo-Epistemic" Uncertainty
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How Neural Nets do Classification? (reminder) (example with 3 classes)
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e 0 = softmax(l) < Vi,o0; =



A Probability for each class?

e A probability vector is better than just predicting a class
o parallel with a regression setting
m instead of predicting a single output value
= predict a distribution (e.g., a mean and variance)
e But... ambiguity: aleatoric vs epistemic
o what is actually uncertain (in the current representation space)
o what the model doesn't know

A probability vector cannot convey all information

(but a good probability vector can be enough for some decision making)




50% dog, 50% plane?

e aleatoric vs epistemic

e Example setup
o a model trained to distinguish 2 classes, dog vs plane
o onanew image, the network predicts 50%/50%
o two possible situations

Case 1!
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RelU Networks are Overconfident (Hein et al., CVPR2019)
Training on CIFAR10 — Test on SVHN i s o8
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e Over-confident predictions

A deep model doesn't know what it doesn't know

e NB:itis also over-confident in regions of inherent uncertainty

(Image from the companion-webpage https://github.com/max-andr/relu_networks_overconfident of:
Why RelU networks yield high-confidence predictions far away from the training data and how to mitigate the problem)
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(Re)Calibrating a Trained Model f

e (Goal: properly quantifying aleatoric uncertainty
e (Calibration = for every x, make the two following match,
o the predicted output probably f(w) from the model

°o and the actual class probability position p(y{a:)

o = "expected calibration error"
o need binning (or density estimation) for estimation

e Possible solutions
o re-fit/tune the likelihood/last layer (logistic, Dirichlet, ...)

o e.g., fine tune a softmax temperature
4
exp(l; /t)

> exp(lj/t)

= 0 = softmaz(l) < Vi,0; =

" {— 00
= exp(.) — 1
= 0 — uniform()
= t -0 = softmax — max




Dataset Shift, Domain Adaptation, Transfer Learning (not today's focus)

e Dataset shift
o the "target" set is different from the training set
o out of distribution situation
°.2
e Solution
o Unsupervised domain adaptation (UDA)
= use unlabeled target data to adapt
o Usual approach
» reduce the discrepancy
between source and target datasets
= a natural fit for the Optimal Transport theory
= or, tune the classifier to become certain on data points




Ensemble methods

e (General principle

o learn several models
o "average" their predictions

e Typical Approach: Bagging (bootstrap aggregating)

o Sample several dataset, with replacement (bootstrap)
o Average model predictions
o Random Forests

= maybe the most know bagging model

m ensemble of decision trees

= additionally use "feature bagging"

e NB on boosting (e.g., AdaBoost) (not a simple average)
© use just-better-than-random models

o iteratively train with re-weighted datasets
o learn the weights of the models




Logistic Regressor Bagging Example

All classifiers (LogisticRegression) Ensemble (LogisticRegression)
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X2

Support Vector Machines (SVM) Bagging Example

All classifiers (SGDClassifier) Ensemble (SGDClassifier)

EstimatorO (SGDClassifier) Estimatorl (SGDClassifier)
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SVM Bagging Example with polynomial features (kernel)

All classifiers (SGDClassifier,p=3) Ensemble (SGDClassifier,p=3)

X2

Estimator0 (SGDClassifier,p=3) Estimatorl (SGDClassifier,p=3)
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Multi-Layer Perceptron (MLP) Bagging Example

All classifiers (MLPClassifier) Ensemble (MLPClassifier)

Estimator0O (MLPClassifier) Estimatorl (MLPClassifier)
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Very-Deep MLP Bagging Example

All classifiers (MLPClassifierdeep)

Ensemble (MLPClassifierdeep)
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Summary on bagging

Ensemble (SGDClassifier) Ensemble (SGDClassifier,p=3)

Ensemble (MLPClassifierdeep)

Bagging nicely handles quantifying aleatoric uncertainty

It works even with overconfident base models

The sampling creates the necessary noise in boundary regions

The model family controls Bagging's Out of Distribution behavior

Simple models have low 00D variety = 100% over-confidence
Complex/varied models/features better assess epistemic uncertainty

However, still a major 00D over-confidence (like most discriminative models)
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Zooming out to see Out Of Distribution Over-confidence

Ensemble (zoomed out) (LogisticRegression)

Ensemble (zoomed out) (SGDClassifier,p=3) Ensemble (zoomed out) (MLPClassifier)

X2

Ensemble (zoomed out) (MLPClassifierdeep) Possible Expected OOD (zoomed out)
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Ensemble (MLPClassifierdeep) e Pu I'El.y—discriminative models fail at 00D Possible Expected OOD

We will ignore this issue for some time

e Somesolutions
- Use Gaussian Processes %
‘ - Combine with one-class / density est.

X2

- Force doubt on generated OOD samples

2
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Learning Ensembles of Deep Models

e Re-seeding for stochastic methods ‘ _

o works very well in practice
04 O

o resource intensive (mem., process)

o some variations/optimizations ®
m snapshot + cyclic learning rate ] =01
o D iffe re n t Loss landscape (simpler model)
families of N
models : Q
o different ]
hyper- |
parameters

o different architectures




Stochastic Learning as Model Ensembling
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e Dropout: simultaneously training 2™ models" (with shared parameters)

o randomly set weights or activations to O (for every SGD sample)
o NB: often, "weight scaling rule" at test time -> very bad, no uncertainty
o NB: dropout should be applied at test time (costly)
e Other sources of stochasticity and ensembling
o (mini-)Batch normalization
o Stochastic (minibatch) Gradient Descent
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Diverse vs Local Ensembling

o Re_SEEding’ Dropout' eee Loss landscape
= diverse ensemble

e Mode fitting (local diversity) . @

1. learn a single model
2. estimate the local loss landscape o0k d e
3. create several perturbations of the

model
4. use all the models as an ensemble

e Bayesian Neural Networks (BNN)

o "dense" ensemble
o can be both local or diverse
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The two rules in probabilities and Bayes'

e "Bayesianism"
o Everything as random variables
o Use (conditional) probabilities ... a lot

e Two probability rules

o Productrule: P(A,B) = P(A|B) P(B)=P(B|A) P(A)

o Marginalization, Sum rule: P(B) = ZP(A, B) = ZP(A = a, B)
A a
e And in the Baye's rule bind them

P(B|A) P(A)  P(B|A) P(A)
P(B) Y P(B|A) P(4)
7

o P(A|B) =

e NB: Exactly the same holds with probability densities (for continuous random variable)



https://en.wikipedia.org/wiki/Bayes'_theorem

Principle of Bayesian "Learning"

Use probabilities to
o represent non-deterministic laws
o represent uncertainty (aleatoric and epistemic)
o reason about uncertainty (do learning, inference)

Considering
o some parameters (e.g., weights of the network, W)

o some dataset (e.g., both training inputs and labels, X))
We have ... 2

 pawix) . PEIW) POV)

P(X)

x P(X|W) P(W)

More verbosely

Plikelihood (trainset|weights) Pprior (weights)

Pposterior (weightsﬂtrainset) =

P, onstant (trainset)

Posterior probability
o probability distribution of the parameters given the training set
o i.e. what we know about the parameters after seeing the training set



https://en.wikipedia.org/wiki/Bayes'_theorem

Principle of Bayesian Neural Networks

input output
probability
vector

e Typical BNN: have a 1D Normal distribution on each weight

o 1mean and 1 variance per weight
o 1billion weights = 2 billions parameters
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Training a Bayesian Neural Networ e I

pluw)
jA‘ w w
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e Bayesian "learning”
© Goal: finding the
posterior distribution on the parameters
© Bposterior (weights|trainset) o

_ Pipeinood(trainset|weights) Pyyior (weights)

P.onstant (trainset)

o Prediction for a new input «

fposterior(w) — /fweights(ﬂ?) : Ppostmor(weights|trainset)

¢ Variational Inference (V1) (or Stochastic Gradient Variational Bayes, SGVB)
o Parameterize P,yscrior (weights|trainset),

e.g., a Normal per weight = 1 billion means and variances

o Do stochastic gradient descent (SGD)
o Sample a weight at every forward pass

l.e., approximate the [ --- by asingle sample




Variational Inference: BNNs vs VAE

e Compared to Variational Autoencoders (VAE)

o Also use the "reparameterization trick"

= changew ~ N (u,0°) ta ~N(0,1); w=p+e.o
= allow the gradient to "flow" to ;t and o
(VAE: allow the gradient to flow to the encoder)

o Model distribution on millions of parameters
(VAE: distribution on latent variables, only a few, but for each data point)

o No per-data (latent) variables = no need for amortization
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Dropout and Bayesian Neural Networks

e Traditional (weight) dropout
o for each weight, "set" it to O with a probability 1 — p

o at test time, multiply weights by p (weight scaling rule)
e Interpretation as a (fixed) distribution
o w; ~ Mizture,(0,v;), or
e; ~ Bernoulli(p) ; w; = &; - v; (reparameterized)

© Bayesian implication: apply dropout at test time
(sometimes called "monte carlo dropout")

* frosterior(T) = [ fuw(Z) * Pposterior (w|trainset)

- fposterior (ZE) — Ewapostmor (w|trainset) [,fw( )]
D

® Jposterior\L) ~ 73 wi (T) Wi ’w' ~ Iposterior \ W rainse
oo () % 5 3 o2 it (wltrainset)

. fposterior Z va 63 Wlth E ~ Ber'n,oullz( )




Bayesian Treatment of Dropout

e Bayesian approach, reminder: everything is a random variable
e Treat p as a random variable (during "training")

o first, how many p do we want to use?
= asingle p for the whole network
= ap per layer
= 3 p per weight
o learn the posterior on the parameters 6, including p
= 0 ={W,p}
= P(O|trainset) < Piikelinood(trainset|0) - Pypior(0)

m = need a prior... that acts as a natural regularizan
o non trivial optimization

e Avariety of dropout: Bernoulli, Gaussian (multiplicative)
dropout, sparsifying prior, ...

(e.g. Learnable Bernoulli Dropout for Bayesian Deep Learning)




Bayesian Neural Networks (BNNs): Summary

e Bayesian treatment of neural networks
o consider each weight as a random variable
o formulate a prior on the weights
o observe some (training) data, and given that...
o ...infer the (posterior) knowledge on these weights
o use this knowledge for prediction

e Several flavors, including
o Dropouts
= Bernouilli or gaussian
= learnable dropout parameters
= using prior to encourage network sparsity
o Normal modeling of each weight

e Learning, inference, testing
o train by gradient descent (SGD) on the "variational" parameters
o use sampling at test time to produce several predictions
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Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus
(COVID-19) Detection

Predictive Posterior (P = 099,050 = 0.02)
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Fig. 1. Example input images with uncertainty and the { (Biraja Ghoshal, Allan Tucker)
tributions generated by Bayesian DNN. Figure 1(a) show dropweight on a BCNN
where the model is highly certain about its prediction ( improve classification
1(b) shows a miss-classified image where the model is u good quantification

wider posterior distributions. human/machine comblnatlon_



Towards safe deep learning: accurately quantifying biomarker uncertainty
in neural network predictions

Ground Truth Non-Stochastic drop-all drop-last heteroscedastic

1.0

LR 3 0.8

Q ' O
-’

0.4

0.2

Predicted s.d. Predicted s.d. Predicted s.d. Predicted s.d.

T; Contrast Image

0.14
0.12
0.10
0.08
0.06
0.04
0.02

Fig.1: Top row: mean confidences (over 20 forward passes) for the given model
to belong to the ‘Active’ class. Bottom row: op,,edicted, the standard deviation
across predictions. Different methods display similar predictions, but the level
of uncertainty varies depending on the network used.

m (Zach Eaton-Rosen, Felix Bragman,

Sotirios Bisdas, Sebastien Ourselin, M.
Jorge Cardoso)
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Fig. 3: In Figure |[3a] we plot point estimates for 20 estimates of the volume
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that can be seen in the plots. This lack of variation is present in all methods
(unshown). In|3b| we see the uncalibrated estimates of uncertainty, and in [3c|we
plot the calibrated estimates. Subjects tion’ set are blue, and ‘test’ orange.
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Propagating uncertainty across cascaded medical imaging tasks for
improved deep learning inference

Multi-modal
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Gaussian processes (GP)

GP = Infinitely-wide BNN
Well formalized

o closed forms

o lot of works around scaling
Allows to include prior learning

Probabilistic, can be combined "easily"
Deep GP avoid too much kernel choice

Figure 4. (a) A ground truth of 2D chest phantom. (b) Filtered backprojection
reconstruction (Ram—Lak filter) from nine projections. (¢) GP reconstruction using
SE covanance, (d) GP reconstruction using Matémn covariance, (e) GP reconstruction
using Laplacian covariance, (f) GP reconstruction using Tikhonov covariance. The GP
reconstructions are using nine projections,

700

600

500

1950 1952 1954 1956 1958 1960 1962
ds

x 0k )y

(Avoiding pathologies in very deep networks, Duvenaud et al.)




Going beyond probabilities?

e Probabilities are a way of represent belief
e |t might be necessary to also represent confidence
e Some possible directions
o Imprecise Probabilities
o Dempster-Shafer Theory (DST)
» theory of belief functions
= evidence theory



https://en.wikipedia.org/wiki/Imprecise_probability
https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory

Evidential Deep Learning

e Principle
O insteadof: Predicting the parameters of an (aleatoric) distribution

o do: predict a distribution over these parameters
e A way of learning/representing epistemic uncertainty on aleatoric uncertainty

Higher Order (Evidential): Lower Order (leellhood)
( p(p, a®|v, A, a0, 8) = p(8m) W r pylp, o) = p(yl6) W

B %
’
’

’

(1, A e, B) = (0, 2, 0.3, 0.3) e

Increasing Evidence
Decreasing Variance

)

(e.g., Deep Evidential Regression (above))
(e.g., Evidential Deep Learning to Quantify Classification Uncertainty)



https://en.wikipedia.org/wiki/Imprecise_probability
https://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory

Bayesian Neural Networks -
Uncertainty Quantification

e Rémi Emonet - Hubert Curien Laboratory
e Deep learning for medical imaging school
e 2021-04-21

THANK YOU!

> |
Sl Ty "\

5%

L
LB
- >
L

JL

- \

A

i;‘i‘ LT
a' )

10

M|

[=]

Questions?

2h,

[}
=y 4

O

SCAN ME
(presentation page)

or go to:
home.heeere.com

o LAB=X — — LABORATOIRE ONIVERSITE D o
PRIMES CREATIS U nuserrcorien B SHERBROOKE ETS R

<<<<<<<<<<<<<<<<<<<<<<< Le
UNIVERSITE DE LYON



https://github.com/twitwi/Presentation-2021-04-21-deep-learning-medical-imaging
https://home.heeere.com/

CC by Official U.S. Navy Imagery
(Flickr)

Ll it

C by DaPuglet (Flickr)

Attribution

United States Government
Work (Flickr)

emDocs 'Multiple Layers of
Diagnostic Uncertainty'

0.2 0.4 06 08 1.0
By @max-andr (github)
/relu_networks_overconfident

Pediatric Ethiscope Embracing
Diagnostic Uncertainty

Bird (100%)

By @max-andr (github)
/relu_networks_overconfident


https://github.com/twitwi/Presentation-2021-04-21-deep-learning-medical-imaging
https://home.heeere.com/
https://www.flickr.com/photos/usnavy/50191386138/sizes/l/
https://www.flickr.com/photos/usnavy/8530729727/sizes/l/
http://www.emdocs.net/diagnostic-uncertainty/
https://pediatricethicscope.org/article/embracing-diagnostic-uncertainty/
https://www.flickr.com/photos/dapuglet/29906341933/sizes/c/
https://www.flickr.com/photos/mlinksva/4946768961/sizes/w/
https://github.com/max-andr/relu_networks_overconfident
https://github.com/max-andr/relu_networks_overconfident
https://en.wikipedia.org/wiki/Bayes%27_theorem
http://alexlenail.me/NN-SVG/index.html
http://proceedings.mlr.press/v33/duvenaud14.pdf
https://www.digitalocean.com/community/tutorials/a-guide-to-time-series-forecasting-with-prophet-in-python-3

References and pointers

e Wikipedia articles
o Bayesian Probabilities
o Imprecise Probabilities
o Dempster-Shafer Theory (DST)
o Proper Scoring Rules’ (and calibration)
e Some (limited) pointers to research articles
o Unclassified
= Theneed for uncertainty quantification in machine-assisted medical decision making
o Oncalibration
= \Well-calibrated regression uncertainty in medical imaging with deep learning
o About dropout
= Variational dropout and the local reparameterization trick
s Variational dropout sparsifies deep neural networks
= Variational Gaussian dropoutis not Bayesian
= Learnable Bernoulli dropout for Bayesian deep learning
o Evidential deep learning
= Evidential Deep Learning to Quantify Classification Uncertainty.
= Deep Evidential Regression.
¢ Someonlinereferences
o Susan Holmes on Bayesian statistics
o NeurlPS lecture on evidential deep learning
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Bayesian Neural Networks - Uncertainty Quantification (Overview)

1. Why we need to quantify uncertainty?
2. Some sources of uncertainty

3. Statistical machine learning approaches
for general uncertainty modeling

4. Deep Learning practices for uncertainty modeling
5. Bayesian Neural Networks

1. Bayesian view of machine learning
2. Variational inference
3. Variational Dropout

6. Applications and Openings
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