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theoretical
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many facets
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Transfer Learning and Domain Adaptation
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Distribution/dataset
alignment

= key for domain
adaptation

= need a notion of
distance
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» OT Problem

= Linear problem

» Linear constraints

= Birkhoff polytope

= Complexity

= O(n3) (general case)

= O(nlog(n))in1D
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Overview

= [ntroduction

= Generalized Optimal Transport as a Modelling Tool
= Scaling Optimal Transport

= Generative Models and Optimal Transport

= Deriving Generalization Guarantees
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Overview:

= Introduction

m  Generalized Optimal Transport as a Modelling Tool
= Scaling Optimal Transport

m  Generative Models and Optimal Transport

= Deriving Generalization Guarantees

Generalized Optimal Transport as a Modelling Tool
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Reminder, optimal transport problem OT(C) = min T CJ = min < T C >

Tell,y Tell,
1,]

= limited to data in the same space (to define C)

X Y X Y
Gromov-Wasserstein problem GW (C*,C" ) = Trgrllnb Z Z T3 Ty L£(Csr, Cjyr)
i,y 5

= matches source points to target points

= minimize the difference of distances

= between a pair of source points

= and a pair of target points

= that are mapped onto each other

= = graph matching

Fused Gromov Wassertein « FGW (C,C%,CY) = (1 — B) - OT(C) + B - GW(CX,CY) »
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Co-Optimal Transport problem

Co — OT(X, Y) = 1IIliIl min E E le’ljl i2j2£(Xi1i27 Y}1j2)
Trell g1 T7€ll g0 T 3
’ Y A

Matches 1 10 70

= source/target points D ......... o)

= sources/target dimensions D ''''''''''''''''''''''' : -'-..,:::Z',',ﬁ ............

m With 2 transport p|an3 ............ . ............ D '-.,...,_-;;,';_-j.'.'.'.'.'.','_' ......
D ....
DD . R
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full compact
representation representation
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More axes of generalization

= Mixed problems ("fused")

= Partial transport, relaxed constraints

=  Multi-marginal

= Class information handling (for domain adaptation)
= Representation/metric learning

m Time-series constraints
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Overview:

= Introduction

m  Generalized Optimal Transport as a Modelling Tool
= Scaling Optimal Transport

m  Generative Models and Optimal Transport

= Deriving Generalization Guarantees

Scaling Optimal Transport
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Entropic regularization

Hierarchical (for spatial or groupeable data)

Sliced approaches / random projections

Stochastic approximations
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increasing
entropic
regularization

>
Optimal
Transport
Plan
-€

finer and finer
hierarchical
scale
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Overview:

= Introduction

m  Generalized Optimal Transport as a Modelling Tool
= Scaling Optimal Transport

m  Generative Models and Optimal Transport

= Deriving Generalization Guarantees

Generative Models and Optimal Transport
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t

probability path continuity equation  yelocity field
<

u(z, ) = OT for Conditional Flow Matching (OT-CFM)
. = (Transport) Optimality of CFM couplings?
&
@%a » CFM to divide-and-conquer OT
s
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Overview:

= [ntroduction

m  Generalized Optimal Transport as a Modelling Tool
= Scaling Optimal Transport

m  Generative Models and Optimal Transport

= Deriving Generalization Guarantees

Deriving Generalization Guarantees

= Probabilistic view of (generalized) optimal transport
= what: e.g., sample complexity, convergence, generalization bounds

= how: e.g., the PAC-Bayesian framework
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Overview:

Introduction

m  Generalized Optimal Transport as a Modelling Tool
= Scaling Optimal Transport
m  Generative Models and Optimal Transport

= Deriving Generalization Guarantees

Conclusion
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m  Generalized Optimal Transport as a Modelling Tool
= Scaling Optimal Transport

m  Generative Models and Optimal Transport

= Deriving Generalization Guarantees

Supplementary slides
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SaGroW : Algorithme d'optimisation pour GW et OTT

Rappel, probléeme de Gromov-Wasserstein (ré-écrit)

GW(C*,C") = mlnz ZT”ZT”/E C’g,CY)

Tell, b

Algorithm SaGroW

Require: a, b (probability vectors of ; and v), C*, CY (cost matrices), £ (loss function), M
(number of samples), € (entropy regularization), a (partial update weight)
1. Ty=ab'
2: for s= 0 to S-1 do
3 (jm,lm) ~ Sample(7T) Ym € [1, M]
4 A= S LICY . CY, )ik € [1,N]
5: T! = solve the regularized OT problem (a, b, A, ¢)
6 T..1=(1-a)Ts+ aT!
7: end for
8

: return Tg_q

= termes vues comme des espérances mathématiques
= algorithme stochastique par échantillonnage

= complexité contrdlée et possibilité de transport 1d
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