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Supervised Machine Learning, illustrated
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Example: Object Detection

Cat: x=10, y=10, s=2, d=3

Cat: x=60, y=11, s=2, d=2

Cat: x=30, y=25, s=1, d=1

Cat: x=10, y=10, s=2

Cat: x=60, y=11, s=2

Cat: x=30, y=25, s=1

Learned

Model

Predicts object bounding boxes

Each box has a an objectness

(a confidence of existence)

Each box has a predicted class

NB: Need labelled training data
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PCA, UMAP, t-SNE, … any visualization

Clustering (k-means, spectral, hdbscan)

Supervised vs Unsupervised |||| ex: Classification vs Clustering
Supervised

(known labels)
Unsupervised
(only inputs)
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DATA

Generative

Story

Parameters

Principle of Probabilistic Modeling (generative models)
Using a generative story / data generation process

start with a story about the data

identify parameters and choices in the story

use data to select the best parameter values

use parameters to do inference, predictions, generation

Challenges

encode constraints/guesses/knowledge as structure

derive/write the optimization algorithm
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Generative Story: example

DATA

Generative

Story

Parameters

Renderer

cat(1, 2, 3)

...

...

Example of a shelf with cat figurines.

Story:

decide on a number of figurines to use

for each figurine

choose one size among the 5 sizes

place the figurine at a random position

take a picture
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Bringing everything together Cat: x=10, y=10, s=2, d=3

Cat: x=60, y=11, s=2, d=2

Cat: x=30, y=25, s=1, d=1

DATA

Generative

Story

Encoder

Detector

Decoder

Renderer

≠

Encoder/Decoder = Detector/Renderer

Train to encode and properly reconstruct

Self-supervised (non-supervised) training
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Teaser: Autoencoding Ornaments

0:00 / 0:40
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Existing Datasets
3D Rooms

...

Atari Games"MultiMNIST

Fruits 2D
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Custom Ornaments Datasets
Scattered Vignettes Colorful Vignettes With Background

Variations

size

rotation

color ⇔ shape association

Differences between "training" and "test"?

same vignettes?

same colors

same scale
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Rough Classification of Existing Unsupervised Approaches
Attend Infer Repeat

AIR, SPAIR

DAIR, SQAIR, R-SQAIR

…

Mixture of layers

IODINE, GENESIS, …

Joint models

SPACE

RICH

…

Robustness to transformations

Learned

Spatial Transformer Networks (STN)

canonicalization

Built-in

Group-equivariant networks

Fully-equivariant networks?

Mixed

 Rémi Emonet / Sayan Chaki − 20 / 31 ●●●●●●●●●●●●●●●●

https://sites.google.com/view/space-project-page


Spatial Transformer Networks (STN)
Spatial Transformer Networks

predict a transformation

extract a glimpse (transformed patch)

do further processing on this glimpse

fully differentiable process
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Spatial Transformer Network

Grid Sampler

(t,α,s)

Image



Improving STN Data-Efficiency by Sequential Estimation

α

RST-Equiv.

features
Image

(t,s)

Grid Sampler

Grid Sampler

Scale-Rotation Equivariant Spatial Transformer Network

group pooling

STEq. RInv.

features

Spatial Transformer Network

Grid Sampler

(t,α,s)

Image
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Details on Data Requirements
Goal: translation (t), rotation (α), scale (s) equivariance
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Auto-Encoding Using STN

α

Image

(t,s)

Grid Sampler

Reconstructed

Image Reverse Sampler

Grid Sampler

encoder

decoder

group

pooling
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features
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 Rémi Emonet / Sayan Chaki − 24 / 31 ●●●●●●●●●●●●●●●●



Technical Elements
Sequential estimation of composite STN

Custom Learnable Riesz network

CNN-Based Glimpse decoder
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Some Experiments
Typical test case

synthetic dataset so we can evaluate

mixture of rotated, scaled, MNIST (digits), here digits 4, 6 and 9

Evaluation goal

can we cluster the digits

can we recover the rotation (position, and scale etc)
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Conclusions and Directions
Summary

a generative story of composed ornaments

an autoencoder approach

a semantic-rich latent representation

targeting data-efficient learning

invariance to rotation and scale

sequential estimation

Open questions

accuracy ⇔ automation tradeoff

better appearance model (flow matching)

learning the composition style

learning the similarity

suggesting "synonyms" of vignettes

Thank you!
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