A Tour of Approaches

for Automatic Ornament Decomposition

Automatically finding recurrent vignettes in a composed-ornaments dataset
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(b) Element discovery (¢) Unsupervised change localization
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Example: Object Detection

Cat: x=10, y=10, s=2, d=3
Learned Cat: x=60, y=11, s=2, d=2
Model Cat: x=30, y=25, s=1, d=1

= Predicts object bounding boxes
= Each box has a an objectness

(a confidence of existence)
= Eachbox has a predicted class

= NB: Need labelled training data
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Supervised vs Unsupervised |||| ex: Classification vs Clustering

Supervised Unsupervised
known labels only inputs
y Inp
L 3 ~‘ ° i O
O v o o i/ 009
00 “eoeo o % o o0
O o e © © ol a
Oo O', © o/ © .
e S D—
° Y o o o o
o © o O '
) o
° ¢ o ®
o O

= PCA,UMAP, t-SNE, ... any visualization

= (Clustering (k-means, spectral, hdbscan)
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Principle of Probabilistic Modeling (generative models)

= Using a generative story / data generation process

= start with a story about the Parameters
= identify parameters and choices in the story
= use data to select the best parameter values
= use parameters to do inference, predictions, generation )
Generative
=  Challenges
. Story
= encode constraints/guesses/knowledge as structure

= derive/write the optimization algorithm Y
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Generative Story: example

Example of a shelf with cat figurines.

Parameters cat(1, 2, 3) Story:

= decide on a number of figurines to use

= for each figurine

Generative = choose one size among the 5 sizes
Renderer
Story = place the figurine at a random position
= takea
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. . - Cat: x=10, y=10, s=2, d=3

Bringing everything together Cat x=60. y=11. s=2. =2
Encoder Cat: x=30, y=25, s=1, d=1
Detector

Decoder | Generative
Renderer Story

=  Encoder/Decoder = Detector/Renderer
= Train to encode and properly reconstruct

= Self-supervised (non-supervised) training
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Teaser: Autoencoding Ornaments
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Existing Datasets
MultiMNIST 3D Rooms Atari Games"

Fruits 2D
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Custom Ornaments Datasets

Scattered Vignettes Colorful Vignettes With Background

= Variations = Differences between "training" and "test"?
= size =  same vignettes?
= rotation = same colors
= color < shape association = same scale
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Rough Classification of Existing Unsupervised Approaches

RICH
Attend Infer Repeat - ¢
| ]
= AIR, SPAIR
Robustness to transformations
= DAIR, SQAIR, R-SQAIR
. » Learned

ial T f ks (ST
Mixture of layers »  Spatial Transformer Networks (STN)

®= canonicalization
= JODINE, GENESIS, ... = Built-in

Joint models =  Group-equivariant networks
= Fully-equivariant networks?

__________ = Mixed
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https://sites.google.com/view/space-project-page

Spatial Transformer Networks (STN)

Spatial Transformer Networks

= predict a transformation
= extract a glimpse (transformed patch)
= do further processing on this glimpse

= fully differentiable process

......
.....
-----

(&) Spatial Transformer Network
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Improving STN Data-Efficiency by Sequential Estimation

RST-Equiv
features

- e e es en an a» e o

group pooling

(b) Scale-Rotation Equivariant Spatial Transformer Network
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Details on Data Requirements

Goal: translation (t), rotation (o), scale (s) equivariance

ConvNet

(or simpler) ReResNet Canonicalization STN
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Auto-Encoding Using STN
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Technical Elements

= Sequential estimation of composite STN
=  Custom Learnable Riesz network

= CNN-Based Glimpse decoder
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Some Experiments

Typical test case

= synthetic dataset so we can evaluate

= mixture of rotated, scaled, MNIST (digits), here digits 4, 6 and 9
Evaluation goal

= can we cluster the digits

= can we recover the rotation (position, and scale etc)
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Conclusions and Directions

=  Summary

a generative story of composed ornaments
an autoencoder approach

a semantic-rich latent representation
targeting data-efficient learning

= invariance to rotation and scale

= sequential estimation

Open questions
= accuracy < automation tradeoff
= better appearance model (flow matching)
= learning the composition style
= Jearning the similarity

= suggesting "synonyms" of vignettes

= Thank you!

Rémi Emonet / Sayan Chaki - 31/ 31



